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Abstract

Critical speeds and the mass center movement of an imbalanced, circumferentially stiff, radially compliant, rotating
annular disk on a stiff shaft and bearings are evaluated. It is demonstrated that recently developed hoop-wound
composite material disks having elastomeric resin and carbon fibers can enter a critical state before reaching the cir-
cumferential strength limit of the material if certain material and geometric relationships are met.
© 2003 Published by Elsevier Ltd.
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1. Introduction

In traditional analyses of the stress—strain state of axisymmetric rotating disks, the volumetric centrifugal
force is defined as yw?r, where v is the density of the material, w is the angular speed, and r is the radius of a
point on a disk in the undeformed condition. Examples of such analyses are reviewed by Timoshenko and
Goodier (1970) for isotropic materials and by Lekhnitskii (1968) for anisotropic materials. In accounting
for radial displacements (u) in the definition of centrifugal forces, the forces are defined as yw?(r + u) and it
is observed that there is a nonproportional relationship between displacement and w?. For a certain
magnitude of w?, stresses and in-plane displacements become unbounded as in the case of critical loads of
elastic systems (Timoshenko and Woinowsky-Krieger, 1959; Ziegler, 1968). It appears that the first in-
vestigation of such a critical state or “static inertial-elastic instability” in rotating structures considered a
uniform, rotating, linear-elastic, isotropic, annular disk on a centric rigid shaft (Brunelle, 1971). Rotating,
nonlinear isotropic disks were investigated by Panovko (1985). Tutuncu (2000) investigated rotating,
cylindrically orthotropic disks. The latter three publications concerned axisymmetric, in-plane inertial
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loadings and the conditions for unstable displacements. It was suggested that, in the case of low-modulus
materials, the instability could become critical prior to the onset of plastic flow.

In kinetic energy storage systems such as flywheels, low-modulus materials have not found application
to-date. The development and perfection of flywheels is connected with the use of modern rigid and high-
strength carbon fiber composite materials. If rigid polymeric resins are used in these composites, ensuring in
the unidirectional composite hoop and radial moduli differing by only one order magnitude, the question of
critical speeds for disks comprised of such materials is not of practical concern. However, efforts to suppress
dangerous radial tensile stresses that can cause a premature delamination and failure of filament wound
disks have resulted in attempts to use highly compliant (elastomeric) resins rather than rigid polymers
(Gabrys and Bakis, 1997a). The large radial compliance of a filament wound elastomeric matrix composite
disk not only avoids premature delamination, but also leads to a potentially safer failure mode, as the
maximal hoop and radial stresses in such disks are limited to a narrow region near the outer radius (Gabrys
and Bakis, 1997b).

The critical speeds of a disk that is rigid in the hoop direction and very compliant in shear and in the
radial direction was considered for the first time in Ochan (1979), where it was shown that a deviation of
inertial loading from axisymmetric could lead to the loss of stability. The work by Ochan (1979) represented
a more theoretical rather than practical interest, as composite materials with such a strong difference in
properties were absent at the time that paper was written. For conventional composite disks, the critical
speed of rotation was not significant; as such speeds exceeded the strength of the disks. The development of
new flexible matrix composites has made investigations of the stability of rotation of disks made from such
materials rather urgent and requires a wider statement of the problem and a more complete analysis.

The purpose of the present paper is to evaluate the loss of stability during rotation of a disk having large
radial and in-plane shear compliances and an initial imbalance causing an asymmetrical distribution of
centrifugal loads.

2. Traditional boundary value problem

We first write the system of the governing equations for a plane problem in cylindrical coordinates (7, )
(see, e.g., Timoshenko and Goodier, 1970), considering a rotating disk as a cylindrically orthotropic body.
Setting stresses a,, gy, T4 and displacements in radial (x) and hoop (v) directions as functions of two
variables » and 0, one obtains the equations of equilibrium,

0o, Ot
. — P. =
ra-t5g (o —o0)+rP =0, "
0oy + 0o + 21,0+ 7P =0,

20 or

where P, and P, are radial and hoop components of volumetric inertial force; the strain—displacement
relations,
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and generalized Hooke’s law for a cylindrically orthotropic body,
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where E, and Ey are the moduli of elasticity in the radial and hoop directions, respectively, v,y and vy, are the
Poisson’s ratios, and G,y is the in-plane shear modulus.
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The boundary conditions for internal (a) and external (b) radii of an annular disk, fixed on a rigid shaft,
are as follows:

u=0, v=0 atr=a,
0,=0, 174=0 atr=>a.

)

3. Body forces in a disk with imbalance

Let us consider a homogeneous, cylindrically orthotropic, uniformly rotating annular disk with an axis
of anisotropy coinciding with the main central axis of inertia but displaced relative to the axis of rotation by
amount A4 (4/r is some small value) due to a slight imbalance (Fig. 1a). The disk is mounted on a relatively
rigid shaft and bearing system. It is easy to derive the following ratio between R (the radius in a system of
cylindrical coordinates with the center on the axis of rotation) and r (the radius in a cylindrical system of
coordinates connected with the center of anisotropy):

1+2écos()+<é>2]. (5)

Neglecting here and in the sequel small values of the second order, (4/r)*, one obtains:

A A
Rzr1/1+2—c0562¢r<1—i——cos@)‘ (6)
r r

The corresponding volumetric centrifugal force, directed along radius R and appropriate to the undeformed
configuration of a disk is equal to:

R =/

Py = y0*r 4y’ A cos 0, (7)
where y is the mass density of the material of the disk and w is the angular speed of rotation.

To obtain from Py the radial (P.) and hoop (Py) components of centrifugal force in the coordinates of
cylindrical orthotropy, one determines the angle o using the law of sines (Fig. 1a):

. Asin 0 Asin 0 A A . A .
sino = SY S ~— (1 — — cos 0) sin 0 ~ — sin 0. (8)
r r

A
R r(l—i—;cos@) "

(a) (b)

Fig. 1. Inertial forces (a) and displacements (b) in a rotating disk with initial imbalance, 4, relative to an axis of rotation Ok.



5222 G.G. Portnov et al. | International Journal of Solids and Structures 40 (2003) 5219-5227

Now it is possible to determine components Py and P,

. A a4 . .
Py = —Pgsino ~ ywzr(l + = cos 9> —sin0 ~ —yw*4sin 0,
r r

4 4 N
P. = Prcosa ~ ywzr(l + = cos 0> 1 - < sin 0> ~ yw’r + yw* A cos 0.
r r

As can be seen, at small eccentricity 4 it is possible to assume that P. = P;.

Linearity of the problem allows the separation of operating loads P, and P, into parts and to consider the
action of each of these parts separately. Let us exclude the axisymmetric component of loading (i.c., the
term yw’r) and analyze in detail only the influence of nonaxisymmetric loads (i.e., to assume that
P. = yw*Acos 0 and Py = —yw*4sin 0). For the consideration of only axisymmetric loads, it is sufficient to
take into account the first of the equations of equilibrium (1) together with the reduced set of Egs. (2) and
(3). Further, it is necessary to exclude from all equations shear stresses and deformations as well as hoop
displacements. As was previously remarked, such a problem (including u in the definition of loading) was
considered by Brunelle (1971) for a linear, isotropic disk and by Tutuncu (2000) for a linear, cylindrically
orthotropic disk.

4. Nonaxisymmetric boundary value problem for flexible matrix composite disks

Before departing the traditional boundary value problem to take into account the influence of nonaxi-
symmetric displacements on centrifugal forces, it is expedient to do some preliminary transformations.
Suppose that the nonaxisymmetric parts of loads P, and P, cause stresses and displacements represented as:

o, =0,(r)cosl, ay=ap(r)cosl, 1,9=1.(r)sin0, (10)
u=u(r)cosf, v=uv(r)siné.
Such a representation allows not only satisfaction of the periodicity condition in 6, but also the separation
of variables 6 and r in the solution of the governing equations. Substituting the expressions for displace-
ments from (10) into (2), one obtains:

Gul Uy 601 U1
—— =g, U =T& — U, V= —— = ——. 11
o 1 1 = Tép — U Vro1 P + or 7 (11)
Hooke’s law remains in a similar form as in (3):
1 1 Tr01 Vor Vo
&1 =—=1(0,1 —Vo01), en=—="_(00 —V001), Vo1 == —=—. 12
1 E (011 0001) 01 E()( 01 0r:1)s  Vro1 G <E0 E, (12)

Boundary conditions (4) are transformed to the form:
0,1 (b) = 1,01 (b) = uy(a) = vy (a) = 0. (13)

In (11) and (12) all unknown displacements, strains, and stresses are functions of r, as in (10).

We next assume that the material of a disk is rigid in the hoop direction (Ey = cc). Such an assumption
completely excludes the possibility of a critical state (loss of stability) of an axisymmetric form and is quite
acceptable for the description of a composite based on carbon fibers in a flexible polyurethane resin
(Gabrys and Bakis, 1997b), where Ey/E, = 1700. For E, = oo, it follows from the fourth relation in (12)
that v,y = 0, and from the second relation in (12) that ¢y; = 0. By substituting ¢;; = 0 into (11), one obtains

Uy = —uy, &1 = —Vo1- (14)
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After substitution of Poisson’s ratio v,y = 0 into the expression for ¢, in (12), one obtains, instead of (12),
the following relations:

1 1 Qu 1
G—refrm:—E—er G_rl:E,.arl' (15)

For determination of the increment of centrifugal force R, due to the nonaxisymmetric displacements, we
first calculate displacement uy in a direction R as a projection to this direction of displacements u and v
in the axes of cylindrical orthotropy (Fig. 1b). Using relations from (10) and (14), one obtains:

Up = ucoso — vsino = u; cos 0 cos o — v; sin 0'sin o. (16)

Taking into account (8) it is possible with sufficient accuracy to accept that uz = u; cos 6 = u.
Increments of centrifugal forces 6P in a direction R and their components 8P, and 6P in directions r
and 0, respectively, are given by the following relations:

3P, = ywzul cos 6,
0P, = ya)zul cosfcoso =~ ywzul cos 0, (17)

. A .
dP) = —yw*u, cos Osin o &~ —yw’u; — cos Osin 0.
r

Substituting the calculated values of volumetric inertial loads from (9) (excluding axisymmetric component)
and their increments from (17) into (1) leads to the equations of equilibrium for the nonaxisymmetric part
of the problem:

Oo, 01,
90 L (6, — 69) = —yw*rdcos 0 — yw’uyrcos 0,
or ' 0 (18)
019 O ) .
r 6T 4 % + 21,9 = yw*rAsin 0 + yw’u, A cos 0'sin 0.
r

Substituting in (18) expressions for stresses from (10) reveals that all terms contain cos 6 in the first equation
and sin 0 in the second (cos 0 in the second equation will be excluded later). After simplification, one obtains
(prime designates differentiation with respect to r):

1ol + T + (00 — 1) = —y@trd — yotuyr, 19)
1o — o1 + 2T01 = Y0’ rA + yw*uy A cos 0.
After transformations with use of relations (14), one obtains:
A
ru{(E, + Gy9) + u)(E, + Gy9) = —yw2u1r<l + — cos 0) — 2yw’rA. (20)
r

Since 4/r < 1, it is possible to exclude the term containing cos 0 from (20) and to express this equation as:
(rd) + 2Pruy = =222 Ar, (21)

where 2% = y?/(E, + G,g).
The boundary conditions for the problem according to (13) and (15) are:

ui(a) =0, uy(b) = 0. (22)
It is necessary to note that satisfaction of the two conditions (22) means automatic satisfaction of all four

conditions (13): from u;(a) = 0 and (14) it follows that v;(a) = 0; from u/(b) = 0 and (15) it follows that
0,1 (b) = 0, and ‘L'rm(b) =0.
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Eq. (21) with homogeneous boundary conditions (22) is the Sturm-Liouville problem (Bessel’s equa-
tion). Its solution, satisfying the given boundary conditions at fixed values of 4, can be expressed in the
form of series of normalized eigenfunctions ¢, and corresponding eigenvalues A, (Levitan, 1950):

00 b

w=> "0 G= [ emrn 23)
n=0 n a

where f(r) = —2)?4r is the right-hand side of Eq. (21).

As it is visible from (23), at 4 = /,,, displacements tend to infinity. Values of w corresponding to these
eigenvalues are the critical speeds of the disk. Critical states correspond to values of /1 at which there are
nontrivial solutions to the homogeneous part of the governing equation: (ru})’ + 2ruy = 0; u(a) =0,
u}(b) = 0. Thus, the investigation of critical states of a rotating disk amounts to a search for eigenvalues of
the homogeneous part of the governing equation (21).

We cast the governing equation (21) in a dimensionless form, substituting p = (r/b)(m = a/b<p< 1),
i, = u; /b, and A4 = A/b. Then, Eq. (21) can be written as follows:

(pi)) + 2% piny = =247 Ap, (24)
where 1% = yw*b?/(E, + G,) is a dimensionless parameter. The boundary conditions are:
u(m) =0, u(1)=0. (25)

It is necessary to note that the limiting value of wb in 2*—the peripheral speed on a disk—is determined by
strength of its material and does not depend on the absolute size of a disk. For a disk comprised of modern
high-strength composites, the limiting value of wb is approximately 1000-1500 m/s. This upper limit of wb
determines the upper limit of A%, above which the search for critical states of a rotating disk caused by its
radial and shear compliances is not of practical interest. For example, for the carbon fiber composite with
polyurethane resin AS4C/PET80 described in Gabrys and Bakis (1997b), 7 = 1460 kg/m*® and
E. + G,y = 0.1 GPa. The limiting speed of rotation can be estimated based on hoop strength, S,, which for
the given material is equal to 2180 MPa: wb = /Sy/y =~ 1200 m/s. These data allow the estimation of the
upper limit of parameter A, corresponding to failure of the disk from hoop stresses: A, ~ 4.6. At the same
time, use of the same fibers with epoxy resin (carbon composite AS4C/Epon 9405 epoxy, also described in
(Gabrys and Bakis, 1997b), with y = 1554 kg/m?, E, + G,y ~ 13.9 GPa, Sy = 2650 MPa) results in
Jiim =~ 0.437.

We next turn to the determination of eigenvalues of the homogeneous part of the governing equation
with appropriate boundary conditions (24) and (25):

(pit,) + A*piy = 0, (26)

u(m) =u;(1) =0. (27)
The general solution for this equation (see, e.g., Kamke, 1971) has the form:

iy = AJo(2p) + BYo(4p), (28)

where J, and Y, are zero order Bessel functions of the first and second kind and 4 and B are constants. The
eigenvalues are determined from a condition of existence of nontrivial solutions for Eq. (26). Such con-
dition is the equality to zero of the determinant of system of the equations for determination of constants
from boundary conditions (27):

Jo(Am)Yi(2) = Ji(A) Yo(m) = 0. (29)

The first eigenvalues, A;, for various normalized sizes of a disk m, are shown in Fig. 2. As may be seen, the
danger of occurrence of a critical state (instability) in a disk of flexible matrix composite with A, = 4.6 is
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Fig. 2. Dependence of the first eigenvalues A, upon the relative sizes of the disks, m.

quite real up to m = 0.686. For a stiff disk, even at m = 0.1, the critical speed is more than twice the limiting
speed based on circumferential strength. Given knowledge of the value of E, + G,y, Fig. 2 allows the
estimation of the occurrence of a critical state in a linear-elastic radially compliant disk of any size.

The solution of Eq. (24) for cases where 4 is not equal to an eigenvalue of the problems (24) and (25) can
be represented as the sum of the general solution (28) of the homogeneous equation and the particular
solution of the nonhomogeneous equation, —24:

(4, p) = AJo(2p) + BYo(2p) — 24. (30)

Using boundary conditions (25) for determination of constants 4 and B, one obtains:

WD) 5 (D%(p) 1>.

Jo(Zm)Yi(2) = J1(2) Yo(4m) (31)

Hoop elements in this case do not change shape—i.e., they remain circles and are only displaced along the
radial direction # = 0. To demonstrate this result, consider the displacement d of a point on the hoop
element:

d=ucosf —vsin#, (32)

where u is the radial displacement of the point and v is the hoop displacement. From (10) and the first of
Eq. (14) one has:

d = u;cos®0 — v sin>0 = u; (cos® 0 + sin’ 0) = uy. (33)

Thus, the in-plane displacement, d, of a point on the hoop element does not depend on coordinate 6 and,
hence, is constant for all points on the hoop element. In other words, concentric circles on the disk are
displaced and do not change shape. This circumstance enables a rather simple determination of the dis-
placement of the center of mass of a rotating homogeneous disk (4.,) with mass M = yrn(b* — a*)H, where
H is the axial thickness of disk and 4 is the initial imbalance. Normalizing all linear distances to the outside
radius, b, and presuming a constant density of the disk, one obtains for A, = A /b, using integration
of displacement of the centers of mass of hoop differential elements, the following expression:



5226 G.G. Portnov et al. | International Journal of Solids and Structures 40 (2003) 5219-5227

lﬁ

/ —

0 05 1 15 2 25 3

Fig. 3. Dependence of the normalized relative displacement of the center of mass, d, upon the parameter A approaching critical speeds
in disks of various relative sizes, m.

- — 2 o
Acm(ﬂ,p):A+1_m2/ ur(4, p)pdp

i, 2<(J1(/1)—mJ1(/1m)) i (

) B
—m Ao (m) ¥y (2) = J1 () Yo(Zm)) 2

(D) im0 1—mz>]. (34)

By this means, the displacement of the center of mass occurs due to the displacements of hoop elements
during the loss of stability of the disk. The dependence of the normalized relative displacement of the mass
center, 6 = A/ 4, on A for disks of various normalized sizes, m, is represented in Fig. 3. Eq. (34) is
approximated very precisely up to A = ; by the equation for § of a rigid disk on an elastic shaft:

k2*
A (m) = 2%
where A, is the first eigenvalue for a given m and k is a coefficient depending upon m and linearily varying

from 0.9 to 1.6 as m changes from 0.1 to 0.9. Strictly speaking, in accordance with the initial assumptions
of our problem, relations (34) and (35) are correct only for rather small A,.

o=1+ (35)

5. Closure

The solution for critical speeds and mass center movement of a circumferentially stiff, radially compliant
disk on a rigid shaft and bearings resembles the solution for a rotating rigid disk on a flexible shaft.
However, such similarity exists only in theory. It is important to note that, in our case, there is no
opportunity for self-centering of the disk. As is known (Panovko, 1985; Den Hartog, 1956), self-centering
of a rotor with a flexible shaft is carried out under the influence of Coriolis acceleration, which occurs as
soon as the center of mass of a disk begins to move in a radial direction from the center of rotation. In such
a case, the center of mass undergoes movement in the tangential direction and eventually is located at the
other side of the center of rotation. During this process, the collinearity of points describing the positions of
the bearing axis, the center of the shaft, and the center of mass of a disk is broken. As noted in Panovko
(1985) and Den Hartog (1956), if such tangential movement of the mass center is somehow prevented, the
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rotor appears unstable at speeds above the critical speed. Such is indeed the situation in the considered
problem. Coriolis acceleration will lead only to a change of speed of rotation of the rigid shaft in rigid
bearings and the self-centering will not be realized. The situation is close to that described in Panovko
(1985) and Den Hartog (1956) for the case of constant-speed rotation about a vertical axis of a system
consisting of a massless framework and an attached rectilinear wire on which a mass, supported by a spring,
can move without friction. At zero angular speed, the mass is displaced relative to the axis of rotation.
The movement of the mass occurs only in the radial direction and the position of the mass at speeds greater
than the critical speed is unstable.

Thus, a circumferentially stiff, radially compliant disk on a rigid shaft rotating in rigid bearings becomes
unstable upon reaching a critical speed. Stable configurations cannot be found at higher speeds. A means of
prevention of a critical state is, obviously, the installation of the shaft in bearings with small rigidity.
However, the problem of a rotating flexible shaft/bearing system with a radially compliant disk, in which
imbalance grows with increasing of speed of rotation, requires separate consideration.
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