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Abstract

Critical speeds and the mass center movement of an imbalanced, circumferentially stiff, radially compliant, rotating

annular disk on a stiff shaft and bearings are evaluated. It is demonstrated that recently developed hoop-wound

composite material disks having elastomeric resin and carbon fibers can enter a critical state before reaching the cir-

cumferential strength limit of the material if certain material and geometric relationships are met.
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1. Introduction

In traditional analyses of the stress–strain state of axisymmetric rotating disks, the volumetric centrifugal

force is defined as cx2r, where c is the density of the material, x is the angular speed, and r is the radius of a
point on a disk in the undeformed condition. Examples of such analyses are reviewed by Timoshenko and
Goodier (1970) for isotropic materials and by Lekhnitskii (1968) for anisotropic materials. In accounting

for radial displacements ðuÞ in the definition of centrifugal forces, the forces are defined as cx2ðr þ uÞ and it

is observed that there is a nonproportional relationship between displacement and x2. For a certain

magnitude of x2, stresses and in-plane displacements become unbounded as in the case of critical loads of

elastic systems (Timoshenko and Woinowsky-Krieger, 1959; Ziegler, 1968). It appears that the first in-

vestigation of such a critical state or ‘‘static inertial-elastic instability’’ in rotating structures considered a

uniform, rotating, linear-elastic, isotropic, annular disk on a centric rigid shaft (Brunelle, 1971). Rotating,

nonlinear isotropic disks were investigated by Panovko (1985). Tutuncu (2000) investigated rotating,
cylindrically orthotropic disks. The latter three publications concerned axisymmetric, in-plane inertial
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loadings and the conditions for unstable displacements. It was suggested that, in the case of low-modulus

materials, the instability could become critical prior to the onset of plastic flow.

In kinetic energy storage systems such as flywheels, low-modulus materials have not found application

to-date. The development and perfection of flywheels is connected with the use of modern rigid and high-
strength carbon fiber composite materials. If rigid polymeric resins are used in these composites, ensuring in

the unidirectional composite hoop and radial moduli differing by only one order magnitude, the question of

critical speeds for disks comprised of such materials is not of practical concern. However, efforts to suppress

dangerous radial tensile stresses that can cause a premature delamination and failure of filament wound

disks have resulted in attempts to use highly compliant (elastomeric) resins rather than rigid polymers

(Gabrys and Bakis, 1997a). The large radial compliance of a filament wound elastomeric matrix composite

disk not only avoids premature delamination, but also leads to a potentially safer failure mode, as the

maximal hoop and radial stresses in such disks are limited to a narrow region near the outer radius (Gabrys
and Bakis, 1997b).

The critical speeds of a disk that is rigid in the hoop direction and very compliant in shear and in the

radial direction was considered for the first time in Ochan (1979), where it was shown that a deviation of

inertial loading from axisymmetric could lead to the loss of stability. The work by Ochan (1979) represented

a more theoretical rather than practical interest, as composite materials with such a strong difference in

properties were absent at the time that paper was written. For conventional composite disks, the critical

speed of rotation was not significant; as such speeds exceeded the strength of the disks. The development of

new flexible matrix composites has made investigations of the stability of rotation of disks made from such
materials rather urgent and requires a wider statement of the problem and a more complete analysis.

The purpose of the present paper is to evaluate the loss of stability during rotation of a disk having large

radial and in-plane shear compliances and an initial imbalance causing an asymmetrical distribution of

centrifugal loads.
2. Traditional boundary value problem

We first write the system of the governing equations for a plane problem in cylindrical coordinates ðr; hÞ
(see, e.g., Timoshenko and Goodier, 1970), considering a rotating disk as a cylindrically orthotropic body.

Setting stresses rr, rh, srh and displacements in radial ðuÞ and hoop ðvÞ directions as functions of two

variables r and h, one obtains the equations of equilibrium,
r
orr

or
þ osrh

oh
þ ðrr � rhÞ þ rPr ¼ 0;

orh

oh
þ r

osrh
or

þ 2srh þ rPh ¼ 0;

ð1Þ
where Pr and Ph are radial and hoop components of volumetric inertial force; the strain–displacement

relations,
er ¼
ou
or

; eh ¼
u
r
þ ov
roh

; crh ¼
ou
roh

þ ov
or

� v
r

ð2Þ
and generalized Hooke�s law for a cylindrically orthotropic body,
er ¼
1

Er
ðrr � mrhrhÞ; eh ¼

1

Eh
ðrh � mhrrrÞ; crh ¼

srh
Grh

;
mhr

Eh

�
¼ mrh

Er

�
; ð3Þ
where Er and Eh are the moduli of elasticity in the radial and hoop directions, respectively, mrh and mhr are the
Poisson�s ratios, and Grh is the in-plane shear modulus.
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The boundary conditions for internal ðaÞ and external ðbÞ radii of an annular disk, fixed on a rigid shaft,

are as follows:
Fig
u ¼ 0; v ¼ 0 at r ¼ a;
rr ¼ 0; srh ¼ 0 at r ¼ b:

ð4Þ
3. Body forces in a disk with imbalance

Let us consider a homogeneous, cylindrically orthotropic, uniformly rotating annular disk with an axis

of anisotropy coinciding with the main central axis of inertia but displaced relative to the axis of rotation by
amount D (D=r is some small value) due to a slight imbalance (Fig. 1a). The disk is mounted on a relatively

rigid shaft and bearing system. It is easy to derive the following ratio between R (the radius in a system of

cylindrical coordinates with the center on the axis of rotation) and r (the radius in a cylindrical system of

coordinates connected with the center of anisotropy):
R2 ¼ r2 1

"
þ 2

D
r
cos h þ D

r

� �2
#
: ð5Þ
Neglecting here and in the sequel small values of the second order, ðD=rÞ2, one obtains:
R � r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

D
r
cos h

r
� r 1

�
þ D

r
cos h

�
: ð6Þ
The corresponding volumetric centrifugal force, directed along radius R and appropriate to the undeformed

configuration of a disk is equal to:
PR � cx2r þ cx2D cos h; ð7Þ

where c is the mass density of the material of the disk and x is the angular speed of rotation.

To obtain from PR the radial ðPrÞ and hoop ðPhÞ components of centrifugal force in the coordinates of

cylindrical orthotropy, one determines the angle a using the law of sines (Fig. 1a):
sin a ¼ D sin h
R

� D sin h

r 1þ D
r
cos h

� � � D
r

1

�
� D

r
cos h

�
sin h � D

r
sin h: ð8Þ
. 1. Inertial forces (a) and displacements (b) in a rotating disk with initial imbalance, D, relative to an axis of rotation OR.
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Now it is possible to determine components Ph and Pr:
Ph ¼ �PR sin a � �cx2r 1

�
þ D

r
cos h

�
D
r
sin h � �cx2D sin h;

Pr ¼ PR cos a � cx2r 1

�
þ D

r
cos h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D

r
sin h

� �2
s

� cx2r þ cx2D cos h:

ð9Þ
As can be seen, at small eccentricity D it is possible to assume that Pr ¼ PR.
Linearity of the problem allows the separation of operating loads Pr and Ph into parts and to consider the

action of each of these parts separately. Let us exclude the axisymmetric component of loading (i.e., the

term cx2r) and analyze in detail only the influence of nonaxisymmetric loads (i.e., to assume that

Pr ¼ cx2D cos h and Ph ¼ �cx2D sin h). For the consideration of only axisymmetric loads, it is sufficient to

take into account the first of the equations of equilibrium (1) together with the reduced set of Eqs. (2) and

(3). Further, it is necessary to exclude from all equations shear stresses and deformations as well as hoop

displacements. As was previously remarked, such a problem (including u in the definition of loading) was
considered by Brunelle (1971) for a linear, isotropic disk and by Tutuncu (2000) for a linear, cylindrically

orthotropic disk.
4. Nonaxisymmetric boundary value problem for flexible matrix composite disks

Before departing the traditional boundary value problem to take into account the influence of nonaxi-

symmetric displacements on centrifugal forces, it is expedient to do some preliminary transformations.
Suppose that the nonaxisymmetric parts of loads Pr and Ph cause stresses and displacements represented as:
rr ¼ rr1ðrÞ cos h; rh ¼ rh1ðrÞ cos h; srh ¼ srh1ðrÞ sin h;

u ¼ u1ðrÞ cos h; v ¼ v1ðrÞ sin h:
ð10Þ
Such a representation allows not only satisfaction of the periodicity condition in h, but also the separation

of variables h and r in the solution of the governing equations. Substituting the expressions for displace-
ments from (10) into (2), one obtains:
ou1
or

¼ er1; v1 ¼ reh1 � u1; crh1 ¼ � u1
r
þ ov1

or
� v1

r
: ð11Þ
Hooke�s law remains in a similar form as in (3):
er1 ¼
1

Er
ðrr1 � mrhrh1Þ; eh1 ¼

1

Eh
ðrh1 � mhrrr1Þ; crh1 ¼

srh1
Grh

;
mhr

Eh

�
¼ mrh

Er

�
: ð12Þ
Boundary conditions (4) are transformed to the form:
rr1ðbÞ ¼ srh1ðbÞ ¼ u1ðaÞ ¼ v1ðaÞ ¼ 0: ð13Þ
In (11) and (12) all unknown displacements, strains, and stresses are functions of r, as in (10).

We next assume that the material of a disk is rigid in the hoop direction ðEh ¼ 1Þ. Such an assumption

completely excludes the possibility of a critical state (loss of stability) of an axisymmetric form and is quite

acceptable for the description of a composite based on carbon fibers in a flexible polyurethane resin
(Gabrys and Bakis, 1997b), where Eh=Er � 1700. For Eh ¼ 1, it follows from the fourth relation in (12)

that mrh ¼ 0, and from the second relation in (12) that eh1 ¼ 0. By substituting eh1 ¼ 0 into (11), one obtains
v1 ¼ �u1; er1 ¼ �crh1: ð14Þ
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After substitution of Poisson�s ratio mrh ¼ 0 into the expression for er1 in (12), one obtains, instead of (12),

the following relations:
1

Grh
srh1 ¼ � 1

Er
rr1;

ou1
or

¼ 1

Er
rr1: ð15Þ
For determination of the increment of centrifugal force RR due to the nonaxisymmetric displacements, we

first calculate displacement uR in a direction R as a projection to this direction of displacements u and v
in the axes of cylindrical orthotropy (Fig. 1b). Using relations from (10) and (14), one obtains:
uR ¼ u cos a � v sin a ¼ u1 cos h cos a � v1 sin h sin a: ð16Þ
Taking into account (8) it is possible with sufficient accuracy to accept that uR ¼ u1 cos h ¼ u.
Increments of centrifugal forces dPR in a direction R and their components dPr and dPh in directions r

and h, respectively, are given by the following relations:
dPR ¼ cx2u1 cos h;

dPr ¼ cx2u1 cos h cos a � cx2u1 cos h;

dPh ¼ �cx2u1 cos h sin a � �cx2u1
D
r
cos h sin h:

ð17Þ
Substituting the calculated values of volumetric inertial loads from (9) (excluding axisymmetric component)

and their increments from (17) into (1) leads to the equations of equilibrium for the nonaxisymmetric part

of the problem:
r
orr

or
þ osrh

oh
þ ðrr � rhÞ ¼ �cx2rD cos h � cx2u1r cos h;

r
osrh
or

þ orh

oh
þ 2srh ¼ cx2rD sin h þ cx2u1D cos h sin h:

ð18Þ
Substituting in (18) expressions for stresses from (10) reveals that all terms contain cos h in the first equation

and sin h in the second (cos h in the second equation will be excluded later). After simplification, one obtains

(prime designates differentiation with respect to r):
rr0
r1 þ srh þ ðrr1 � rh1Þ ¼ �cx2rD � cx2u1r;

rs0rh1 � rh1 þ 2srh1 ¼ cx2rD þ cx2u1D cos h:
ð19Þ
After transformations with use of relations (14), one obtains:
ru001ðEr þ GrhÞ þ u01ðEr þ GrhÞ ¼ �cx2u1r 1

�
þ D

r
cos h

�
� 2cx2rD: ð20Þ
Since D=r 	 1, it is possible to exclude the term containing cos h from (20) and to express this equation as:
ðru01Þ
0 þ k2ru1 ¼ �2k2Dr; ð21Þ
where k2 ¼ cx2=ðEr þ GrhÞ.
The boundary conditions for the problem according to (13) and (15) are:
u1ðaÞ ¼ 0; u01ðbÞ ¼ 0: ð22Þ
It is necessary to note that satisfaction of the two conditions (22) means automatic satisfaction of all four

conditions (13): from u1ðaÞ ¼ 0 and (14) it follows that v1ðaÞ ¼ 0; from u01ðbÞ ¼ 0 and (15) it follows that
rr1ðbÞ ¼ 0, and srh1ðbÞ ¼ 0.
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Eq. (21) with homogeneous boundary conditions (22) is the Sturm–Liouville problem (Bessel�s equa-

tion). Its solution, satisfying the given boundary conditions at fixed values of k, can be expressed in the

form of series of normalized eigenfunctions un and corresponding eigenvalues kn (Levitan, 1950):
u1 ¼
X1
n¼0

Cn

k2 � k2
n

unðrÞ; Cn ¼
Z b

a
unðrÞf ðrÞdr; ð23Þ
where f ðrÞ ¼ �2k2Dr is the right-hand side of Eq. (21).

As it is visible from (23), at k ¼ kn, displacements tend to infinity. Values of x corresponding to these

eigenvalues are the critical speeds of the disk. Critical states correspond to values of k at which there are

nontrivial solutions to the homogeneous part of the governing equation: ðru01Þ
0 þ k2ru1 ¼ 0; u1ðaÞ ¼ 0,

u01ðbÞ ¼ 0. Thus, the investigation of critical states of a rotating disk amounts to a search for eigenvalues of

the homogeneous part of the governing equation (21).

We cast the governing equation (21) in a dimensionless form, substituting q ¼ ðr=bÞðm ¼ a=b6 q6 1Þ,
�uu1 ¼ u1=b, and D ¼ D=b. Then, Eq. (21) can be written as follows:
ðq�uu01Þ
0 þ �kk 2q�uu1 ¼ �2�kk 2 Dq; ð24Þ
where �kk 2 ¼ cx2b2=ðEr þ GrhÞ is a dimensionless parameter. The boundary conditions are:
�uu1ðmÞ ¼ 0; �uu01ð1Þ ¼ 0: ð25Þ

It is necessary to note that the limiting value of xb in �kk2––the peripheral speed on a disk––is determined by

strength of its material and does not depend on the absolute size of a disk. For a disk comprised of modern

high-strength composites, the limiting value of xb is approximately 1000–1500 m/s. This upper limit of xb
determines the upper limit of �kk2, above which the search for critical states of a rotating disk caused by its

radial and shear compliances is not of practical interest. For example, for the carbon fiber composite with

polyurethane resin AS4C/PET80 described in Gabrys and Bakis (1997b), c ¼ 1460 kg/m3 and

Er þ Grh � 0:1 GPa. The limiting speed of rotation can be estimated based on hoop strength, Sh, which for

the given material is equal to 2180 MPa: xb ¼
ffiffiffiffiffiffiffiffiffi
Sh=c

p
� 1200 m/s. These data allow the estimation of the

upper limit of parameter �kklim corresponding to failure of the disk from hoop stresses: �kklim � 4:6. At the same

time, use of the same fibers with epoxy resin (carbon composite AS4C/Epon 9405 epoxy, also described in

(Gabrys and Bakis, 1997b), with c ¼ 1554 kg/m3, Er þ Grh � 13:9 GPa, Sh ¼ 2650 MPa) results in
�kklim � 0:437.

We next turn to the determination of eigenvalues of the homogeneous part of the governing equation

with appropriate boundary conditions (24) and (25):
ðq�uu01Þ
0 þ �kk 2q�uu1 ¼ 0; ð26Þ

�uu1ðmÞ ¼ �uu01ð1Þ ¼ 0: ð27Þ

The general solution for this equation (see, e.g., Kamke, 1971) has the form:
�uu1 ¼ AJ0ð�kkqÞ þ BY0ð�kkqÞ; ð28Þ

where J0 and Y0 are zero order Bessel functions of the first and second kind and A and B are constants. The

eigenvalues are determined from a condition of existence of nontrivial solutions for Eq. (26). Such con-

dition is the equality to zero of the determinant of system of the equations for determination of constants

from boundary conditions (27):
J0ð�kkmÞY1ð�kkÞ � J1ð�kkÞY0ð�kkmÞ ¼ 0: ð29Þ

The first eigenvalues, �kk1, for various normalized sizes of a disk m, are shown in Fig. 2. As may be seen, the

danger of occurrence of a critical state (instability) in a disk of flexible matrix composite with �kklim ¼ 4:6 is



Fig. 2. Dependence of the first eigenvalues �kk1 upon the relative sizes of the disks, m.
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quite real up to m ¼ 0:686. For a stiff disk, even at m ¼ 0:1, the critical speed is more than twice the limiting

speed based on circumferential strength. Given knowledge of the value of Er þ Grh, Fig. 2 allows the

estimation of the occurrence of a critical state in a linear-elastic radially compliant disk of any size.

The solution of Eq. (24) for cases where �kk is not equal to an eigenvalue of the problems (24) and (25) can

be represented as the sum of the general solution (28) of the homogeneous equation and the particular

solution of the nonhomogeneous equation, �2D:
�uu1ð�kk; qÞ ¼ AJ0ð�kkqÞ þ BY0ð�kkqÞ � 2D: ð30Þ
Using boundary conditions (25) for determination of constants A and B, one obtains:
�uu1ð�kk; qÞ ¼ 2D
J0ð�kkqÞY1ð�kkÞ � J1ð�kkÞY0ð�kkqÞ
J0ð�kkmÞY1ð�kkÞ � J1ð�kkÞY0ð�kkmÞ

 
� 1

!
: ð31Þ
Hoop elements in this case do not change shape––i.e., they remain circles and are only displaced along the

radial direction h ¼ 0. To demonstrate this result, consider the displacement d of a point on the hoop

element:
d ¼ u cos h � v sin h; ð32Þ
where u is the radial displacement of the point and v is the hoop displacement. From (10) and the first of

Eq. (14) one has:
d ¼ u1 cos2 h � v1 sin
2 h ¼ u1ðcos2 h þ sin2 hÞ ¼ u1: ð33Þ
Thus, the in-plane displacement, d, of a point on the hoop element does not depend on coordinate h and,

hence, is constant for all points on the hoop element. In other words, concentric circles on the disk are

displaced and do not change shape. This circumstance enables a rather simple determination of the dis-

placement of the center of mass of a rotating homogeneous disk ðDcmÞ with mass M ¼ cpðb2 � a2ÞH , where

H is the axial thickness of disk and D is the initial imbalance. Normalizing all linear distances to the outside
radius, b, and presuming a constant density of the disk, one obtains for Dcm ¼ Dcm=b, using integration

of displacement of the centers of mass of hoop differential elements, the following expression:



Fig. 3. Dependence of the normalized relative displacement of the center of mass, d, upon the parameter �kk approaching critical speeds

in disks of various relative sizes, m.
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Dcmðk; qÞ ¼ D þ 2

1� m2

Z 1

m
�uu1ð�kk; qÞqdq

¼ D 1

"
þ 4

1� m2

ðJ1ð�kkÞ � mJ1ð�kkmÞÞY1ð�kkÞ � ðY1ð�kkÞ � mY1ð�kkmÞÞJ1ð�kkÞ
�kkðJ0ð�kkmÞY1ð�kkÞ � J1ð�kkÞY0ð�kkmÞÞ

 
� 1� m2

2

!#
: ð34Þ
By this means, the displacement of the center of mass occurs due to the displacements of hoop elements

during the loss of stability of the disk. The dependence of the normalized relative displacement of the mass

center, d ¼ Dcm=D, on �kk for disks of various normalized sizes, m, is represented in Fig. 3. Eq. (34) is
approximated very precisely up to �kk ¼ �kk1 by the equation for d of a rigid disk on an elastic shaft:
d ¼ 1þ k�kk 2

�kk 2
1 ðmÞ � �kk 2

; ð35Þ
where �kk1 is the first eigenvalue for a given m and k is a coefficient depending upon m and linearily varying

from 0.9 to 1.6 as m changes from 0.1 to 0.9. Strictly speaking, in accordance with the initial assumptions

of our problem, relations (34) and (35) are correct only for rather small Dcm.
5. Closure

The solution for critical speeds and mass center movement of a circumferentially stiff, radially compliant
disk on a rigid shaft and bearings resembles the solution for a rotating rigid disk on a flexible shaft.

However, such similarity exists only in theory. It is important to note that, in our case, there is no

opportunity for self-centering of the disk. As is known (Panovko, 1985; Den Hartog, 1956), self-centering

of a rotor with a flexible shaft is carried out under the influence of Coriolis acceleration, which occurs as

soon as the center of mass of a disk begins to move in a radial direction from the center of rotation. In such

a case, the center of mass undergoes movement in the tangential direction and eventually is located at the

other side of the center of rotation. During this process, the collinearity of points describing the positions of

the bearing axis, the center of the shaft, and the center of mass of a disk is broken. As noted in Panovko
(1985) and Den Hartog (1956), if such tangential movement of the mass center is somehow prevented, the
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rotor appears unstable at speeds above the critical speed. Such is indeed the situation in the considered

problem. Coriolis acceleration will lead only to a change of speed of rotation of the rigid shaft in rigid

bearings and the self-centering will not be realized. The situation is close to that described in Panovko

(1985) and Den Hartog (1956) for the case of constant-speed rotation about a vertical axis of a system
consisting of a massless framework and an attached rectilinear wire on which a mass, supported by a spring,

can move without friction. At zero angular speed, the mass is displaced relative to the axis of rotation.

The movement of the mass occurs only in the radial direction and the position of the mass at speeds greater

than the critical speed is unstable.

Thus, a circumferentially stiff, radially compliant disk on a rigid shaft rotating in rigid bearings becomes

unstable upon reaching a critical speed. Stable configurations cannot be found at higher speeds. A means of

prevention of a critical state is, obviously, the installation of the shaft in bearings with small rigidity.

However, the problem of a rotating flexible shaft/bearing system with a radially compliant disk, in which
imbalance grows with increasing of speed of rotation, requires separate consideration.
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